Great Moderation or Great Mistake: Can rising confidence in low macro-risk explain the boom in asset prices?

Tobias Broer, IIES, Stockholm University*
Afroditi Kero, Department of Economics, University of Cyprus

First version: June 2011. This version: February 2013

Abstract

The fall in US macroeconomic volatility from the mid-1980s coincided with a strong rise in asset prices. Recently, this rise, and the crash that followed, have been attributed to overconfidence in a benign macroeconomic environment of low volatility. This paper introduces learning about the persistence of volatility regimes in a standard asset pricing model. With full information about the highly persistent, but not permanent, nature of volatility regimes, the observed fall in US macroeconomic volatility leads to a relatively small increase in asset prices. When investors infer the persistence of low volatility from empirical evidence, however, Bayesian learning can deliver a rise in prices by up to 80% and a strong crash upon return to high volatility. A simple learning mechanism that highlights increasing confidence in a permanent, rather than transitory, fall in volatility predicts the magnitude and timing of the boom better than standard learning about transition probabilities as in Cogley and Sargent (2008a,b).

JEL Classification: D83, E32, E44, G12.
Keywords: Macroeconomic Risk, Asset Prices, Time-Varying Volatility

*Contact: tobias.broer@iies.su.se, afroditi.kero@eui.eu. We would like to thank Morten Ravn, Ramon Marimon, Alessandro Mennuni, Per Krusell and Karl Walentin, as well as seminar participants at Tel Aviv University, Boston University, CREI, Normac 2011, the Greater Stockholm Macro Group, Pompeu Fabra and SIFR for comments on previous drafts. Broer gratefully acknowledges financial support from the European Research Council under Advanced Grant 230574.
From the Great Moderation to the Great Conflagration: The decline in volatility led the financial institutions to underestimate the amount of risk they faced, thus essentially (though unintentionally) reintroducing a large measure of volatility into the market.”

Thomas F. Cooley, Forbes.com, 11 December 2008

“The stress-tests required by the authorities over the past few years were too heavily influenced by behavior during the Golden Decade. […] The sample in question was, with hindsight, most unusual from a macroeconomic perspective. The distribution of outcomes for both macroeconomic and financial variables during the Golden Decade differed very materially from historical distributions.”

Andrew Haldane, Bank of England, 13 February 2009

“But what matters is how market participants responded to these benign conditions. They are faced with what is, in essence, a complex signal-extraction problem. But whereas many such problems in economics involve learning about first moments of a distribution, this involves making inferences about higher moments. The longer such a period of low volatility lasts, the more reasonable it is to assume that it is permanent. But as tail events are necessarily rarely observed, there is always going to be a danger of underestimating tail risks.”

Charles Bean, European Economic Association, 25 August 2009

“The remaining question is whether the relaxation in financial prudence could have been triggered by false expectations of a perennially smooth economic environment that policymakers could have avoided in words and deeds.”

Jean-Claude Trichet, European Central Bank, 5 September 2008

1 Introduction

The fall in macroeconomic volatility in the United States and other countries from the mid-1980s, later coined the “Great Moderation”, coincided with a strong rise in asset prices. After the economic crisis that started in 2007, both policy-makers and academics attributed part of this rise, and the subsequent fall in prices, to overconfidence in the benign macroeconomic environment of the “golden decade” (Haldane 2009). According to this argument, in their attempt to infer the distribution of future shocks on the basis of observed data, investors overestimated
the persistence of a low volatility environment, thus bidding up the price of assets beyond their fundamental value. This paper introduces learning about the persistence of volatility regimes in a standard asset pricing model. It shows that the fall in US macroeconomic volatility since the mid-1980s only leads to a relatively small increase in asset prices when investors have full information about the highly persistent, but not permanent, nature of low volatility regimes. When investors optimally infer the persistence of low volatility from empirical evidence using Bayes’ rule, however, the model can deliver a much stronger rise in asset prices, although still smaller than observed in the data. Moreover, depending on the learning scheme, the end of the low volatility period leads to a strong and sudden crash in prices.

Previous studies have found that a fall in macroeconomic volatility of the magnitude observed in the United States between the late 1980s and the early 1990s would essentially have to be permanent to explain a significant proportion of the subsequent boom in equity prices (Lettau et al 2008). However, while some authors have attributed the Great Moderation to structural changes in developed economies that are indeed very persistent, or potentially permanent, such as central bank independence, the increase in world trade, or the development of new financial products to diversify risk, others have pointed to its transitory origins, such as an unusually long period of small exogenous shocks (“good luck”) that hit Western economies during this period (see section II for more detail). Moreover, similar uncertainty about the origins and persistence of the Great Moderation can be found in statements by market participants. After the economic crisis that started in 2007, both policymakers and academics have attributed the boom in asset prices and their subsequent crash to the overconfidence of investors in a benign macroeconomic environment of low volatility (Bean 2009, Cooley 2008, Haldane 2009, Trichet 2008). For example, Haldane (2009) argues that data availability was such that the high volatility period preceding the Great Moderation was often neglected in the estimation of quantitative asset pricing models. Similarly, Bean (2009) attributes part of the boom and bust in asset prices to rising investor confidence that the low volatility environment would be permanent.

This paper looks at the behaviour of asset prices in an environment where investors have to infer
the persistence of changes in macro-volatility from the data. Specifically, we interpret the economic experience of the US economy after the World War II as consisting of realisations of high and low volatility regimes, whose transition probabilities are unknown to investors. This allows us to analyse the behaviour of asset prices when investors use optimal Bayesian learning rules to infer the persistence of periods of low macro-volatility. Specifically, we study an economy where investors update their priors about transition probabilities in line with observed realisations of high and low volatility regimes according to Bayes’ rule. In a standard specification where agents have a beta prior and thus attach positive probabilities to the whole range of persistence values (Cogley and Sargent 2008a,b), the model delivers a boom and bust in asset prices of between 30 and 45 percent. But since agents update their priors most quickly at the beginning of the Great Moderation, this is where prices rise most quickly. The implied concave relation of prices with time is not, however, found in the data. With a two-point prior that captures the debate about the nature of the Great Moderation as either an unusually long sequence of small shocks (“good luck”) or permanent structural change (“good policy”), both boom and bust are about twice as large. Moreover, the increase in prices follows an S-shaped pattern with time, that is more in line with the evidence. Interestingly, the uncertainty around mean transition probabilities implied by learning increases the boom in asset prices, due to a strong Jensen’s inequality effect not present in a full-information version of the model. As a robustness exercise, we also look at non-optimal, “adaptive” learning schemes, where investors use simple statistical rules to update their inference about volatility on the basis of observed data. This ad hoc learning results in strong overvaluation of assets, relative to the prices implied by full information about the data generating process, but does not yield a strong crash after the end of the Great Moderation (which we identify with the beginning of the economic crisis in 2007).

This paper is most related to the literatures on asset pricing with time-varying volatility, and with learning about features of the economic environment. After earlier papers on the effect of changes in economic volatility for asset prices in stationary environments (Bonomo and Garcia (1994, 1996) and Drifil and Sola (1998), more recently Bansal and Lundblad (2002)), Lettau
et al (2008) ask whether a persistent change to a low macro-volatility regime can help explain the boom in US asset prices of the 1990s and early 2000s. They find that the low volatility environment would essentially have to be permanent to explain the data.\footnote{Lower macro-volatility is only one item on a long list of potential reasons behind the asset price boom of the 1990s and 2000s. Others are a lower equity premium (Blanchard (1993), Jagannathan, McGrattan, and Scherbina (2000), Fama and French (2002)), higher long-run growth (Jagannathan, McGrattan, and Scherbina (2000), Fama and French (2002), Campbell and Shiller (2004), although Siegel (1999) finds no evidence for this), stronger intangible investment in the 1990s (Hall (2000)) saving during the 1990s by the baby boom generation (Abel (2003)), redistribution of rents towards owners of capital (Jovanovic and Rousseau (2003)) or reduced costs of stock market participation and diversification (Heaton and Lucas (2000), Siegel (1999), Calvet, Gonzalez-Eiras, and Sodini (2003)).}

Most papers that incorporate learning into asset pricing models look at environments where agents learn about the mean growth rate of output or consumption. For example, Zeira (1999) looks at asset price behaviour when investors continuously update their priors about the length of high productivity regimes. Cogley and Sargent (2008b) assume that after the Great Depression, investors had pessimistic priors about the probability of transitions from a high to a low-growth state. Using a learning mechanism that is identical to one of those analysed in our study, they show how this may explain a sustained fall over time from an initially high equity premium, as learning leads to rising confidence in high growth. More recently, Adam and Marcet (2010) show how learning about an unknown process for cum-dividend equity returns introduces a self-referential element in equity prices that leads to persistent bubbles and occasional crashes. More related to this paper is a growing number of contributions that study learning about risk. Branch and Evans (2010) employ self-referential adaptive learning about asset prices and return volatility in order to explain high frequency booms and busts in asset prices. Weitzman (2007) adopts a consumption-based asset-pricing model and replaces rational expectations with Bayesian learning about consumption growth rate volatility, which allows him to solve a number of asset pricing puzzles. Finally, a recent paper by Johannes, Lochstoer and Mou (2011) look at Bayesian learning when agents are uncertain not only about current volatility and growth regimes and the parameters governing their transitions, but also attach positive prior probability to more than 1 model. They show how this leads to non-stationary revisions of beliefs that are correlated with realised asset returns. Moreover, with standard preferences, this setup implies
a realistic equity premium and return predictability.

Most relevant for this paper are two studies that link the asset price boom and bust of 1990s and 2000s to learning about regime changes in key parameters of the economic environment. Boz and Mendoza (2010) study a partial equilibrium model where investors face an exogenous leverage constraint that follows a two-state Markov process with unknown transition probabilities. Assuming Bayesian learning as in Cogley and Sargent (2008b), the authors show that with little prior information, the observation of a string of high leverage periods can lead to overoptimism about their persistence and thus a boom in asset prices, leverage and consumption which crashes abruptly once the economy switches back to a tighter constraint. While one of our learning mechanisms also follows Cogley and Sargent (2008a), we analyse exogenous changes in macro-volatility, rather than in regimes of financial regulation. This focus is similar to that of Lettau et al. (2008) who also study the asset price effect of changes in macro volatility-regimes under limited information about the environment. Particularly, while knowing all parameters of the data-generating process, including the persistence of volatility regimes, agents in their model ignore whether the economy is currently in a high or low volatility regime. The authors then calculate asset prices given the sequence of posterior state probabilities implied by an econometric regime-switching model estimated on post-war consumption data for the US. This setup implies, first, that model-implied prices are always lower than those that would prevail in the most benign low-volatility regime with full information. Moreover, this setup makes the quantitative results highly dependent on the parameter that describes the persistence of the low volatility state. Only when low volatility is, essentially, permanent (in the sense of a probability of remaining at low volatility in the following quarter of more than 99.9 percent), does the Great Moderation imply a strong increase in asset prices.

Our work differs from these studies, and the literature more generally, in the mechanism we analyse, and in the particular time variation in prices that it generates. First, we provide evidence from the academic literature and the business press (see section II), that, from the

\(^{2}\)Lettau et al (2008) also have two states of different mean growth, leaving four states of the economy in total.
mid-1990s onwards, both academics and market participants knew that the US economy had experienced a change in aggregate volatility with the Great Moderation. We recall the diverse candidate explanations proposed by observers of this fall in macro-volatility and their distinct implications for its duration, and provide direct statements of market participants about the uncertain persistence of the Great Moderation. This evidence is the basis for our main assumption, that agents were aware of a fall in macro-volatility, but uncertain about its persistence. On the basis of this assumption, we are the first to systematically model the intuition, found in policy statements and the popular press, that increasing confidence in the persistent, or permanent, nature of the Great Moderation contributed to the boom and bust in asset prices in the 1990s and 2000s. Second, we show how Bayesian learning schemes that capture this intuition in a standard asset pricing model imply a boom in asset prices, and a subsequent bust if the economy returns to a regime of high volatility, of between 35 and 80 percent, which is greater than the rise in prices in the absence of uncertainty about persistence, but smaller than in the data. Moreover, we show how the time-path of prices is very different from that in models with uncertainty about the prevailing volatility and growth regime, where the rise in prices due to the Great Moderation is concentrated in the early to mid-1990s (as in Lettau et al 2008). In our setting, prices continue to rise throughout the Great Moderation. Thus, while we do not capture the level of asset prices around the turn of the century or their fall in 2000, both linked to the so-called “dot com bubble”, our Bayesian learning mechanisms do predict a period of rising prices that is longer-lasting than that in, for example, Lettau et al (2008). Interestingly, in a model with a two-point prior about a transitory vs. permanent Great Moderation the rise in prices follows an S-shape pattern over time. This is more in line with the data than the concave pattern implied by learning about transition probabilities with beta priors as in Cogley and Sargent (2008 a,b).

We also compare our results to more ad-hoc statistical learning schemes, which can lead to an even stronger boom in prices, but do not explain a sudden fall once the economy returns to a high volatility regime. Finally, our work shows how, contrary to uncertainty about dividend realisations or about prevailing regimes, uncertainty about the persistence of volatility regimes
increases asset prices above certainty values. The reason for this can, as we demonstrate, be found in a Jensen’s inequality effect that results from a strongly non-linear relationship between certainty prices and regime persistence that, we argue, is different in nature from that in Veronesi (1999).

The rest of the paper is organised as follows. To motivate our approach in more detail, section II reviews the main empirical facts on the Great Moderation as well as the debate about its causes among academics and market participants. Section III presents the model. Section IV presents the result for a standard Bayesian model of learning about transition probabilities between volatility regimes. Finally, section V shows how the results change when we make a different prior assumption designed to capture the suspicion about a possibly permanent Great Moderation, and for non-Bayesian learning schemes.

2 The Great Moderation, its uncertain cause and persistence, and the boom in asset prices

2.1 Asset Prices and the Great Moderation: Stylized Facts

Figure 1 and figure 2 present the time series of real GDP and consumption growth rates and their corresponding volatilities (computed as the standard deviation over 10-quarter rolling windows). Both series exhibit a significant and abrupt fall in volatility, which persisted until the beginning of the current crisis. The timing of the drop, however, differs: while GDP volatility declined around the middle of the 1980s, the fall occurred somewhat later for consumption growth, at the beginning of the 1990s.

Enter Figure 1 and 2 about here
Moments of US GDP growth

<table>
<thead>
<tr>
<th>Date</th>
<th>Mean (%)</th>
<th>StDev (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952Q2 : 1983Q4</td>
<td>0.53</td>
<td>1.1</td>
</tr>
<tr>
<td>1984Q1 : 2006Q4</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>2007Q1 : 2012Q3</td>
<td>−0.01</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Table 1: The table reports the mean and standard deviation of the real GDP growth rate. Output is defined in real per-capita terms. GDP and the population data are taken from Bureau of Economic Analysis. The data are quarterly and span the period 1952Q2 – 2012Q3.

Moments of US Consumption Growth

<table>
<thead>
<tr>
<th>Date</th>
<th>Mean (%)</th>
<th>StDev (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952Q2 : 1991Q4</td>
<td>0.57</td>
<td>0.82</td>
</tr>
<tr>
<td>1992Q1 : 2006Q4</td>
<td>0.61</td>
<td>0.36</td>
</tr>
<tr>
<td>2007Q1 : 2012Q3</td>
<td>0.04</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Table 2: The table reports the mean and standard deviation of the real consumption growth rate. Consumption is defined in real per-capita terms. Consumption and population data are taken from BEA. The data are quarterly and span the period 1952Q2 – 2012Q3.

Using quarterly data from 1952Q2 to 2012Q3, table 1 and 2 quantify this decline in volatility for different subperiods.\(^3\) The end dates of the first subperiod are 1984Q1 for GDP and 1992Q1 for consumption\(^4\), and the second period ends with the start of the financial crisis in 2007. Whereas there is almost no change in mean growth across the first two subperiods, there is a significant fall in volatility of more than 50 percent for both aggregate output and consumption growth. In the third sub-sample that covers the recent crisis, we observe a sharp decrease in mean growth for both GDP and consumption and a strong rise in volatility.

Enter Figure 3 and 4 about here

Figure 3 shows how the decline in macroeconomic volatility coincided with a strong rise in asset prices and a fall in the US dividend-price ratio for the S&P 500. Importantly, this

\(^3\)See the Data Appendix for a more detailed description of the data series.

\(^4\)McConnell and Perez-Quiros (2000) provide evidence that 1984Q1 was the break date for the GDP growth series and Lettau et al. (2008) provide evidence that 1992Q1 was the break date for the aggregate consumption growth series.
fall was much less abrupt than the decline in volatility itself. The exact magnitude of the rise in US stock market valuation depends on the measure that is used to quantify payouts to shareholders. Figure 4 compares the price-dividend ratio (the solid line) to two other measures used in the literature. First, when measured relative to net earnings (the dotted line), apart from a lower absolute level, the time path of stock prices is very similar. The same is not true, however, when stock prices are measured relative to a dividend measure that includes payouts to shareholders via repurchases of stocks (the dashed line), which are attractive to firms because of the preferential tax treatment of capital gains relative to high incomes in the US. Specifically, the importance of repurchases has increased steadily after 1982, when SEC rule 10b-18 clarified the conditions under which firms could avoid an SEC investigation for market manipulation after a share repurchase, to reach a magnitude similar to dividend payments around the turn of the century.\(^5\) Thus, the boom in asset prices between the early 1980s and the early 2000s is around half as strong when dividends are adjusted to include share repurchases. In correspondence to the previous tables, table 3 shows average stock price valuation measures for three subperiods, choosing 1995Q1, the period identified by Lettau et al (2008) as a structural break in the price-dividend ratio, as the start of the second subperiod. The price-dividend ratio more than doubled across the first two periods, while the price-earnings ratio increased more than 90 percent. The rise in the adjusted price-dividend ratio, for which data end in 2003, is with 60 percent about half as strong as that in the unadjusted measure. Both price-dividend and price-earnings ratios fell back to levels seen in the 1960s and 1970s with the start of the recent crisis.

The aim of this paper is to identify the contribution of rising confidence in the Great Moderation for the evolution of US asset prices over the last 30 years, rather than to replicate the exact magnitude of their observed rise in the data. We thus do not choose a preferred valuation ratio among the three measures discussed in this section. Rather we note that, as shown in figure 4, the rise in price-dividend and price-earnings ratios between the mid-1980s and the recent crisis was around 200 percent. The boom in a measure of the price-dividend ratio adjusted for share

\(^5\)See Grullon and Michaely (2002) for details. Note that the share repurchase data are only available between 1971 and 2003.
Table 3: The table reports means of the price-dividend ratio \(\frac{p_d}{d} \) and the price-earnings ratio \(\frac{p}{e} \) for the S&P 500. \(\frac{p_d}{d} \text{adj} \) is the price-dividend ratio adjusted for share repurchases using the data by Boudoukh et al (2007). Their last available data relate to the year 2003, and the calculations are based on the assumption that repurchases are zero prior to 1971, as suggested by figure 4. As the sample of US firms in Boudoukh et al (2007) is slightly broader than that underlying the measures for PD and PE ratios, which are taken from Robert Shiller’s homepage, the adjusted PD ratio is calculated as \(PD_{\text{adj}} = \frac{PD_{\text{adj}}}{PD_{\text{adj}}} \), where a ★ denotes the measures presented in their paper.

repurchases was, however, significantly lower. With the caveat that data on share repurchases are not available on a consistent basis for the whole period and that their cyclical nature makes averages over previous periods an imperfect guide to the latter part of the sample, a reasonable lower bound for the magnitude of the asset price boom should be around 100 percent.

2.2 Uncertainty about Origin and Persistence of the Great Moderation

By the second half of the 1990s, both the academic literature (Kim and Nelson (1999), McConnell and Perez-Quiros (1997, 2000)) and the business press had noticed a break in the volatility properties of US output growth around the middle of the preceding decade. Somewhat later, a similar decline in volatility was documented for a broader set of US macro-economic variables (Blanchard and Simon (2001), Stock and Watson (2005)), as well as for other industrial countries (Stock and Watson 2003). However, although the Great Moderation itself had become a stylised fact, there was no consensus about its causes. While some authors explained the phenomenon by changes in the structure of industrial economies, such as financial innovation (Dynan et al 2006), improved inventory management, or financial and trade liberalisation (see Wachter (2006) for a brief summary), the two perhaps most prominent hypotheses competed under the
heading of “Good Policy or Good Luck?”. Specifically, following the seminal article by Stock et al (2003), several studies\(^6\) used time-varying VAR models to find that a string of unusually small shocks, rather than changes in their transmission to main macroeconomic variables or in the conduct of monetary policy, were at the root of the decline in macro-volatility. Against this, both academics (Benati et al 2008) and policymakers (Tucker 2005, Bernanke 2004) argued that reduced-form models were likely to mistake effects of improved monetary policy, such as more stable but unobserved inflation expectations, for changes in the variance-covariance-properties of exogenous economic shocks. For example, Bernanke (2004) argued that “some of the benefits of improved monetary policy may easily be confused with changes in the underlying environment”. Importantly, the lack of consensus about the causes of the observed fall in macro-volatility left it unclear whether the phenomenon was likely to be permanent, as suggested by structural change or possibly improved policy environments, or transitory, in line with the “good luck” hypothesis.

How did market participants perceive the Great Moderation and its effect on prices? Investment analysts explicitly attributed part of the observed fall in the equity risk premium since the late 1980s to the decline in macro-volatility. For example, it was noted in Goldman Sachs research (2002) that an estimated 8 percentage point fall in the risk premium since the 1970s was “underpinned by dramatic improvements in the economic environment. Inflation fell sharply, and the volatility of GDP growth, inflation and interest rates all declined significantly.” (p. 2). But while investors acknowledged the effect of the Great Moderation on asset prices, they were also aware of the uncertain persistence of this low-volatility environment and thus, of the decline in equity premia. For example, regarding risk premia in fixed income securities, Unicredit analysts (2006) argued that “the ongoing deterioration in surprise risk should be seen as one of the arguments behind the declining risk premium. Whether this is due to a more effective central bank policy, a major improvement in the forecast ability of economic observers around the globe, sheer luck or maybe a mix of all three factors can’t finally be answered.” (p. 10). Researchers at JP Morgan (2005), on the other hand, attribute most of the fall in volatility to

\(^6\)Primiceri (2005), Sims and Zha (2006), and Canova, Gambetti, and Pappa (2007).
a changed orientation of policymakers towards a “Stability Culture” which, however, they see as uncertain to persist.

We draw three conclusions from this evidence: first, the fall of macro-volatility since the mid-1980s was accepted as a stylised fact, and widely seen as a contributing factor to higher asset prices during the 1990s and 2000s. Second, as shown by Lettau et al (2008), standard asset pricing models predict significantly higher asset prices during periods of low volatility only when the fall in volatility is permanent, or extremely persistent. Finally, during the Great Moderation it was exactly this persistence that investors were uncertain about. Therefore, this paper puts learning about the persistence of volatility changes at the center of its analysis. Particularly, we study if rising confidence in the persistence of low volatility can explain the strong and gradual rise in asset prices during the Great Moderation. Second, we look at the bust in asset prices implied by an end of the benign environment of low macro-volatility, which we compare to the fall in asset prices observed after the beginning of the recent crisis. And finally, we analyse how the asset price dynamics with learning compare to those in a full information version of the model.

3 The model

This section adds learning about the persistence of volatility regimes to a standard asset pricing model with recursive preferences as in Epstein and Zin (1989, 1991) or Weil (1989).

3.1 Preferences

We consider an economy with an infinitely-lived representative agent who maximises utility defined recursively as in Epstein and Zin (1989, 1991) or Weil (1989)

\[U_t = [(1 - \beta)C_t^{\frac{1-\gamma}{\alpha}} + \beta(E_tU_{t+1}^{1-\gamma})^{\frac{1}{\alpha}}]^{\frac{\alpha}{1-\gamma}} \]
where C_t is aggregate consumption, E_t is the mathematical expectation with respect to the agent’s subjective probability distribution conditional on period t information, $\alpha = \frac{1}{1-\gamma}$, γ is the coefficient of relative risk aversion, and ψ the elasticity of intertemporal substitution.

The first-order condition associated to holdings of a risky asset paying random dividends D_t is

$$P_t = E_t^s[M_{t+1}(P_{t+1} + D_{t+1})]$$

where P_t is the asset price in period t and M_{t+1} is the stochastic discount factor, which, with Epstein-Zin preferences, equals

$$M_{t+1} = (\beta(\frac{C_{t+1}}{C_t})^{-\frac{1}{1-\gamma}})^{\frac{\alpha}{\alpha-1}} R_{w,t+1}^{\alpha-1}$$

Here, $R_{w,t+1}^{\alpha-1}$ is the return on the aggregate wealth portfolio of the representative agent, equal to the aggregate consumption flow.

3.2 The Processes for Consumption and Dividend Growth

We choose a simple and transparent way of modelling an economy that goes through periods of low and high macro-volatility by assuming that log consumption follows an exogenous random walk with drift

$$g_t = \Delta \ln C_t = \bar{g} + \varepsilon_t$$

where \bar{g} is constant mean consumption growth.7 Shocks ε_t are independently normally distributed, and their variance follows a two-state Markov process

7Previous studies like Lettau et al (2008) have also looked at the time-variation in \bar{g}, although Boguth and Kuehn (2012) find no significant effect on asset prices when they add estimated revisions in beliefs about mean growth from the Lettau et al framework to a factor model of asset prices. Positive revisions to the anticipated volatility of consumption growth, however, are significantly negatively priced. Here, we assume \bar{g} to be constant over time, and instead concentrate on changes over time in the variance of shocks ε_t.

14
\[\varepsilon_t \sim N(0, \sigma^2_t), \quad \sigma^2_t \in \{\sigma^2_l, \sigma^2_h\} \]

The transition probabilities for the Markov process are

\[\Pr(\sigma^2_{t+1} = \sigma^2_l \mid \sigma^2_t = \sigma^2_l) = F_{ll} \]
\[\Pr(\sigma^2_{t+1} = \sigma^2_h \mid \sigma^2_t = \sigma^2_h) = F_{hh} \]

which yields the transition probability matrix as

\[
F = \begin{bmatrix}
F_{ll} & 1 - F_{ll} \\
1 - F_{hh} & F_{hh}
\end{bmatrix}
\]

Following Mehra and Prescott (1985), and in line with the endowment nature of the economy, it is common to assume that dividend flows equal consumption flows. To capture the higher empirical volatility of dividends, we follow Campbell (1986), Abel (1999), Bansal and Yaron (2004) or Lettau et al (2008), and use a generalised version of the standard model where shocks to dividend growth are a multiple of those to consumption

\[\Delta \ln D_t = \bar{g} + \lambda \varepsilon_t \quad \lambda \geq 1 \]

Dividends thus follow the same volatility pattern as consumption, but are on average more volatile.

3.3 Full Information Price-Dividend Ratios

We can use the first-order condition for share holdings to express the price-dividend ratio \(p_t = \frac{P^D_t}{D_t} \) as

\[
p_t = (p_t)^{1-\alpha} E_t [\beta^\alpha (\frac{C_{t+1}}{C_t})^{-\frac{\alpha}{1-\alpha}} (p_{t+1} + 1)^{\alpha-1} (p_{t+1} + 1) \frac{D_{t+1}}{D_t}] \quad (2)
\]
where \(\rho_t = \frac{P_C}{C_t} \) is the price of a claim to aggregate consumption relative to its flow return and \(\frac{P_C}{C_t} \) equals \(\frac{P_D}{D_t} \) whenever \(\lambda = 1 \). When the agent knows the true structure of uncertainty, given the random walk nature of consumption and dividends, the price-dividend and price-consumption ratios are functions only of the volatility state, \(p_t = p(\sigma_t^2) \), and thus non-random conditional on \(\sigma_t^2 \). Thus, we can simplify (2) by taking expectations across realisations of log-normal consumption and dividend growth conditional on \(\sigma_t^2 + 1 \), which gives a recursive expression for the price-dividend and ratios.\(^8\)

Note that in the special case when \(\lambda = 1 \), both consumption and dividend growth follow the same log-normal distribution. With \(\psi = \frac{1}{2} \) (CRRA preferences), this yields an analytical solution to the vector of price-dividend ratios \(p \) as

\[
p = \beta F(1 + p)e^{(-\gamma + 1)\bar{g}}(e^{(-\gamma + 1)^2\sigma^2})
\]

(7)

\[
= F\beta e^{(-\gamma + 1)\bar{g}}(e^{(-\gamma + 1)^2\sigma^2})
\]

(8)

where \(\sigma^2 = [\sigma^2_l; \sigma^2_h] \) is the vector of volatilities, and \(F = [I - \beta F e^{(-\gamma + 1)\bar{g}}(e^{(-\gamma + 1)^2\sigma^2})]^{-1} \).

3.4 Learning and Subjective Beliefs

To study whether a long spell of \(\sigma_l \) can lead to a boom in asset prices by increasing the confidence in the persistence of a low-volatility environment, we assume that the representative agent does

\[
p(\sigma_t^2) = \rho_t^{1-\alpha} \beta^\alpha e^{(-\frac{\psi+\alpha}{2})\bar{g}}
\]

(3)

\[
\left(F_{ii} \frac{(-\frac{\psi+\alpha}{2})^2}{\sigma_t^2} e^{(-\frac{\psi+\alpha}{2})\bar{g}} (1 + \rho_i)^{\alpha-1} (1 + p_i) + F_{ij} \frac{(-\frac{\psi+\alpha}{2})^2}{\sigma_t^2} e^{(-\frac{\psi+\alpha}{2})\bar{g}} (1 + \rho_j)^{\alpha} (1 + p_j) \right)
\]

(4)

where \(\rho = \frac{P_C}{C_t} \) follows

\[
\rho^\alpha(\sigma_t^2) = \rho_t^{1-\alpha} \beta^\alpha e^{(-\frac{\psi+\alpha}{2})\bar{g}}
\]

(5)

\[
\left(F_{ii} \frac{(-\frac{\psi+\alpha}{2})^2}{\sigma_t^2} e^{(-\frac{\psi+\alpha}{2})\bar{g}} (1 + \rho_i)^{\alpha-1} + F_{ij} \frac{(-\frac{\psi+\alpha}{2})^2}{\sigma_t^2} e^{(-\frac{\psi+\alpha}{2})\bar{g}} (1 + \rho_j)^{\alpha} \right)
\]

(6)
not know the full probabilistic structure of the economy. Specifically, the agent knows that log-changes of dividends are normally distributed with mean \bar{g} but learns about the transition probabilities between volatility states F_{hh} and F_{ll} from observed transitions between high and low volatility. The agent thus knows the structure of the model and all parameter values except the true transition probabilities, F_{hh} and F_{ll}, which she aims to infer on the basis of the history of volatility-states $\Sigma_t = \{\sigma^2_t, \sigma^{2}_{t-1}, \ldots, \sigma^2_2, \sigma^2_1\}$. Thus, we assume that every period, the agent observes a dividend realization σ^2_t and the distribution that this specific realization is drawn from, parameterised by σ^2_t. We believe that this assumption captures well the evidence, contained in Section II, that market participants were certain of a change in the volatility around the mid-1980s, but uncertain about its persistence.

Our benchmark version of the model follows Cogley and Sargent (2008a) and assumes that the agent has independent beta-binomial prior distributions about F_{hh} and F_{ll}

$$f_0(F_{hh}, F_{ll}) \propto f_0(F_{hh})f_0(F_{ll})$$

with

$$f_0(F_{hh}) = f(F_{hh} \mid \Sigma^0) = \text{beta}(n^h_0, n^{hl}_0) \propto F_{hh}^{n^h_0-1}(1-F_{hh})^{n^{hl}_0-1}$$

$$f_0(F_{ll}) = f(F_{ll} \mid \Sigma^0) = \text{beta}(n^l_0, n^{lh}_0) \propto F_{ll}^{n^l_0-1}(1-F_{ll})^{n^{lh}_0-1}.$$

where Σ^0 denotes a prior belief about frequencies n^i_j of transitions from state i to state j.

The agent updates this prior on the basis of the likelihood function L for the history of volatility states Σ^t conditional on F_{hh} and F_{ll}, which is the product of two independent binomial density functions, thus

$$L(\Sigma^t \mid F_{hh}, F_{ll}) \propto L(\Sigma^t \mid F_{hh})L(\Sigma^t \mid F_{ll})$$
where

\[
L(\Sigma^t | F_{hh}) = \text{binomial}(F_{hh}, F_{hl}) \propto F_{hh}^{n_{t}^{hh}} (1 - F_{hh})^{n_{t}^{hl}}
\]

\[
L(\Sigma^t | F_{ll}) = \text{binomial}(F_{ll}, F_{lh}) \propto F_{ll}^{n_{t}^{ll}} (1 - F_{ll})^{n_{t}^{lh}}
\]

Here, \(n_{ij}^t\) is a “counter” that equals the number of transitions from state \(i\) to state \(j\) up to time \(t\) plus the prior frequencies \(n_{ij}^0\). The posterior kernel is the product of the beta prior and the binomial likelihood function,

\[
f(F_{hh}, F_{ll} | \Sigma^t) \propto L(\sigma^2 | F_{hh}, F_{ll}) \cdot f(F_{hh}, F_{ll} | \Sigma^{t-1})
\]

which after normalizing by \(M(\Sigma^t) = \int \int F_{hh}^{n_{t}^{hh}-1} (1 - F_{hh})^{n_{t}^{hl}-1} F_{ll}^{n_{t}^{ll}-1} (1 - F_{ll})^{n_{t}^{lh}-1} dF_{hh} dF_{ll}\) yields

the posterior density function as the product of independent beta distributions

\[
f(F_{hh} | \Sigma^t) = \text{beta}(n_{t}^{hh}, n_{t}^{hl}) \propto F_{hh}^{n_{t}^{hh}-1} (1 - F_{hh})^{n_{t}^{hl}-1}
\]

\[
f(F_{ll} | \Sigma^t) = \text{beta}(n_{t}^{ll}, n_{t}^{lh}) \propto F_{ll}^{n_{t}^{ll}-1} (1 - F_{ll})^{n_{t}^{lh}-1}
\]

Note that in this context, the counters \(n_{ij}^t\) are sufficient statistics for the posterior.

So far, we have described how agents update their priors about transition probabilities on the basis of observed data. Even with posterior distributions for \(F_{hh}\) and \(F_{ll}\) in hand, however, the uncertainty about future transition paths fundamentally changes the problem of the representative agent. This is because her willingness to pay for the asset today depends on transition probabilities in future periods, whose distribution is a function of the realised sequence of regimes via the updating rule described above. A fully Bayesian agent thus needs to take expectations across not only dividend realisations and the distribution of \(F_{hh}\) and \(F_{ll}\), but also across different beta distributions indexed by the counters \(n_{ij}^t, i,j \in \{l,h\}\) that in turn depend on future regime sequences. Like Boz and Mendoza (2010), or Johannes, Lochstoer and Mou
(2011), in this paper we circumvent the curse of dimensionality that this implies by adopting the “anticipated utility” learning scheme proposed by Cogley and Sargent (2008a). They assume that the agent updates her prior in a Bayesian fashion as a function of observed data, but neglects the dependence of future transition probabilities on the future realised regime paths. Rather, she takes today’s posterior distributions \(f(F_{ii} | \Sigma^t), i \in \{h,l\} \) as a time-invariant description of uncertainty about transition probabilities forever in the future. Note that this assumption can be motivated either as an approximation to fully Bayesian behaviour, or as a summary of behaviour by agents who learn in a Bayesian fashion on the basis of observed data, but use a simplified updating for future periods.\(^9\) The following section will look at an alternative learning schema where the agent takes into account the effect of future regime realisations on her inference about transition probabilities.

Using Cogley and Sargent (2008a)’s anticipated utility approach, the equilibrium asset price can be calculated using a fixed point method similar to that under full information. Let \(p(\sigma^2_t, F) \) denote the price-dividend ratio when the transition probability matrix is \(F \). Following Cogley and Sargent (2008a), \(p^{BL}_t \), the vector of price-dividend ratios under Bayesian learning about transition probabilities can then be written as

\[
p^{BL}_t = \int p(\sigma^2_t, F) f(F, \Sigma^t) dF
\]

where \(f(F, \Sigma^t) \) is the posterior distribution of \(F \)\(^{10}\). Note that for given \(F_{hh}, F_{ll} \), \(p(\sigma^2_t, F) \) is described by the same pair of equations as under full information ((6), (4)). And the law of iterated expectations implies that we can compute \(p(\sigma^2_t, F) \) as a fixed point of these two equations. \(p^{BL}_t \) can then easily be calculated by numerical integration across the independent beta posteriors for \(F_{hh}, F_{ll} \).

\(^9\)Cogley and Sargent (2008a) compare the anticipated utility approach to fully Bayesian decision making in a finite horizon savings problem. They find that the differences are small especially for moderate risk-aversion and at the beginning of the agent’s life, when consumption in the following periods can still be smoothed well by changing savings behaviour. How good the approximation is in an infinite-horizon setting, and with the preferences assumed here, is an open issue.

\(^{10}\)For a derivation of equation (9) see Appendix B.
4 Quantitative Results for the Benchmark Economy

4.1 The exercise

This section presents the results of numerical simulations to answer the two main questions of this paper: Can learning about the persistence of the Great Moderation explain the observed boom and bust in US asset prices? And can increasing confidence in this persistence lead to an overvaluation of assets, and a larger fall in prices at the end of the low-volatility period, relative to the case of full information? To answer these questions, we analyse a scenario that is similar to the economic experience of the US after World War II. In particular, we interpret this experience as a long realisation of high volatility followed by the Great Moderation that ends with the recent crisis. Our data generation process thus consists of three sequences of shocks corresponding to three subperiods of different consumption growth volatility σ^2_t. Specifically, our analysis starts with a high volatility regime in 1952Q211. Since in our highly stylised model, there is no distinction between consumption and GDP, we use a starting date for the Great Moderation at the beginning of 1984, as suggested by the fall in GDP volatility, but also look at later dates as suggested by the consumption growth series. In line with the observed rise in volatility in figure 1, we locate the end of the Great Moderation at the beginning of 2007, the starting year of the crisis. To compute the fall in asset prices around this end of the Great Moderation we also make the stronger assumption that the economy returned to the high volatility environment observed before the Great Moderation. This assumption is largely heuristical. It allows us to isolate the crash in asset prices implied by the end of the Great Moderation from other factors that this paper abstracts from.

11This particular date is chosen to equal the initial data period. The model results for the behaviour of asset prices during the Great Moderation, however, are not sensitive to the exact choice of the start date for the high volatility regime.
4.2 Parameter choice

4.2.1 Preferences

As shown by Bansal and Yaron (2004), for a rise in consumption volatility to increase asset prices with Epstein-Zin preferences, the intertemporal elasticity of substitution ψ has to be greater than unity. Thus, we follow Lettau et al (2008) and set $\psi = 1$. For our statements about the size of boom and bust to be interesting, the model has to deliver a level of asset prices that is approximately equal to the data in the period before the Great Moderation. Rather than changing parameters across different learning rules to target asset prices exactly, however, we choose $\beta = 0.9935$ to target an interest rate of 2 percent p.a. (which varies very little across different specifications), and set $\gamma = 30$ which yields equity prices that are, on average across the versions of the model we analyse, close to US data, but not exactly equal to it for any particular specification.

4.2.2 The Process for Consumption and Dividends

Apart from the transition matrix F, the consumption process in this model is characterised by three parameters: constant mean growth \bar{g}, and the standard deviations in the two subperiods σ_h, σ_l, which we estimate directly from quarterly data on US personal real per capita consumption expenditure, using the subperiods from table 1. This yields mean growth of 0.6 percent per quarter and standard deviations of 0.82 and 0.37 percent respectively.

When agents learn about the persistence of regimes from the observed transitions between low and high volatility periods, the matrix F that defines the underlying data generating process has no relevance for the equilibrium asset prices in the economy. However, to obtain benchmark values of asset prices in the absence of uncertainty about transition probabilities and without learning, we use a particularly simple ex-post estimate of F, which we denote as the “full-information” transition probability matrix F^{FI}. Specifically, we choose F^{FI}_{ll}, F^{FI}_{hh} such that the expected durations of high and low volatility regimes equal the subperiods identified from
Parameter Values for the Benchmark Model

<table>
<thead>
<tr>
<th>Preferences</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.9935</td>
</tr>
<tr>
<td>γ</td>
<td>30</td>
</tr>
<tr>
<td>ψ</td>
<td>1.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Endowment Process</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{g})</td>
<td>0.0059</td>
</tr>
<tr>
<td>(\sigma_l)</td>
<td>0.0037</td>
</tr>
<tr>
<td>(\sigma_h)</td>
<td>0.0082</td>
</tr>
<tr>
<td>λ</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Table 4: Parameter values in the benchmark model.

US data. So \(F_{FI}^{F} = 1 - \frac{1}{T} \), where \(T_l, T_h \) are the durations of the Great Moderation and the high-volatility period preceding it, which yields

\[
F^{FI} = \begin{bmatrix}
0.989 & 1 - 0.989 \\
1 - 0.992 & 0.992
\end{bmatrix}
\]

It is interesting to note that these transition probabilities are almost identical to those in Lettau et al (2008), based on a more sophisticated estimated Markov process on the same data.\(^{12}\)

Unless otherwise mentioned, we set \(\lambda = 4.5 \) as suggested by Lettau et al (2008) on the basis of the relative volatility of US consumption and dividends. Table 4 summarises the parameters of preferences and the endowment process for the benchmark model.

4.2.3 Learning Parameters

When agents learn about transition probabilities, the only remaining free parameters are those describing their beta prior distribution \(f_0(F_{hh}, F_{ll}) \). To be as agnostic as possible about the

\(^{12}\)Their point estimates are

\[
F = \begin{bmatrix}
0.991 & 1 - 0.991 \\
1 - 0.994 & 0.994
\end{bmatrix}
\]

Their process is more complex, however, as they also include uncertainty about mean growth.
information agents have at the beginning of the scenario we analyse, we choose as a benchmark an uninformative prior distribution with initial parameters $n_{ij}^0 = 1, \forall i, j$, for which the beta distribution coincides with the uniform distribution on $[0, 1]$. This implies that, as regimes persist, agents update relatively quickly their posterior beliefs in the direction of higher persistence. Particularly, at the beginning of the Great Moderation, agents believe the high-volatility regime that was uninterrupted for 32 years to be strongly persistent. The independence of F_{hh}, F_{ll}, however, implies that this increase in the persistence estimate during the course of the high volatility regime does not lead agents to assume any prior persistence for the low volatility regime at the beginning of the Great Moderation. In other words, although agents have significantly changed their views about the durability of one of the two regimes, which they estimate to be highly persistent by the early 1980s, they continue to expect that any move to low volatility is, essentially, a short-lived outlier. To see to which degree the results depend on this, we also investigate the implications of an alternative assumption, that agents have a moderately persistent prior for the low volatility regime. Specifically, in this alternative case, we assume that $n_{ll}^0 = 1.5, n_{lh}^0 = 0.5$, so agents have the same amount of information as in the benchmark case, but with a moderate mean persistence of 0.75.\footnote{This is equivalent to giving equal weight to an uninformative prior and a distribution with the same amount of information and a mean equal to the posterior mean persistence for the high volatility regime.}

4.3 Asset Price Dynamics with Learning

4.3.1 Rising Posterior Mean Persistence Gradually Increases Asset Prices

Figure 5 presents the time path of the PD ratio in US data in the upper panel. The bottom panel depicts both the PD ratio with learning from an uninformed prior (solid lines) and when agents take as certain the ex-post, full-information transition probability matrix F^{FI}. As a result of the calibration, and independently of learning, the model delivers realistic levels of asset prices, and thus a realistic equity premium, before the beginning of the Great Moderation. The model with full information delivers a small jump in prices of around 15% in 1985, but no sustained
asset price boom during the Great Moderation. With learning, however, although the model is not able to replicate the hump-shape in PD ratios or their almost three-fold rise until 2007, we see a strong and gradual rise in prices of more than thirty percent as agents increase their persistence estimate of the Great Moderation. And importantly, when the low volatility period comes to an end at the end of 2007, the model predicts a strong fall in prices of 22%. Again, this is larger than in the full-information case, as the move back to the high-volatility regime does not only lead to a “switch” in the conditional probabilities (from the top to the bottom rows of the matrix F), but also reduces the estimated persistence of the low-volatility regime through the addition of an observed regime change.

Enter Figure 5 and 6 about here

Figure 6 presents the same results for a moderately persistent prior at the beginning of the Great Moderation. The time path of price-dividend ratios has a shape very similar to that in figure 5, but the magnitudes are larger, with a boom of 42%, and a fall in asset prices at the end of the Great Moderation of 32 percent. Table 5 summarises the results.

In summary, while the model predicts a strong gradual boom in prices during the Great Moderation and a sharp fall at its end, neither of the two calibrations replicates the full magnitude, or the exact shape, of the observed rise in US PD ratios. Particularly, during the Great Moderation, US asset prices rose most steeply at the end of the 1990s, fell at the beginning of the 2000s and then remained flat until the crisis. In contrast, in the model, the marginal effect of an additional observation on posterior beliefs about regime persistence is strongest when priors are flat. This leads to the steepest increase in prices at the beginning of the Great Moderation. The failure to predict the hump-shape observed in the data, on the other hand, results from the fact that the model concentrates on changes in volatility over time around constant mean growth. It is thus unable to capture phenomena like the dotcom boom of the late 1990s and early 2000s, which has been attributed to a rise and fall in average productivity expectations.

To illustrate the learning dynamics underlying the path of asset prices, Figure 7 depicts, for the case of an uninformative prior, the evolution of posterior probability distributions during
Table 5: “Boom” denotes the increase in prices until the end of the Great Moderation relative to the high-volatility regime preceding it (computed over windows of five years). “Overvaluation” is the overvaluation at the end of the Great Moderation relative to the prices under full information. And “Bust” is the fall in prices in the first period after the Great Moderation.

the Great Moderation. Starting from the initial uniform distribution, probability mass becomes more and more concentrated at values close to 1, leading to the rise in asset valuation in figure 5 as agents predict low volatility to last longer on average.

4.3.2 Comparison of the results with Cogley and Sargent (2008) and Lettau et al (2008)

Cogley and Sargent (2008) analyse the effect of post-Great Depression pessimism on asset prices when agents learn the transition probabilities in an economy that goes through states of high and low mean-growth of consumption. They show among other results that, with moderate to strong pessimism and risk-neutral consumers, the model delivers a substantial fall in the average equity premium between the first and second half of their post-1933 sample of 70 years equal to around 3 percentage points (compared with a fall of slightly more than 6 percentage points in the data). They also show how the underlying rise in the price-dividend ratio is monotone, and stronger at the beginning of their sample, with about 40 percent of the increase happening during the first 10 of 70 years. Lettau et al (2008) concentrate on the post-WW II period, and analyse a model where risk-averse consumers know transition probabilities between four states that feature high / low mean consumption growth and high/ low volatility of consumption.
growth, but are uncertain about the current state they are in. They show how, with preference and technology parameters similar to those in this paper, the model delivers a strong boom in asset prices only when consumers know that low-volatility regimes are, essentially, permanent. For example, when the probability of remaining in the low volatility state is 0.999, the model predicts 50 percent of the observed rise in asset prices between 1990 and 2002. Importantly, all of the rise in prices is located in the years 1991 to 1996, during which period their econometric model estimates a rise in the posterior probability of a low-volatility state from 16 to 98 percent. Our model applies the learning mechanism in Cogley and Sargent (2008) to a simplified version of the Lettau et al (2008) model that abstracts from changes in mean growth. This allows us to concentrate on learning about the unknown value of regime persistence, rather than making ad-hoc assumptions about it. Relative to the two aforementioned papers, our model delivers a rise in asset prices that is with between 32 and 42 percent substantial but also less than in the data and somewhat smaller than in those papers. Importantly, the nature of learning and the assumed certainty about a fall in volatility starting in 1984, delivers a monotone rise in asset prices during the whole period of the Great Moderation and a strong fall in prices at its end. The sustained rise and the fall are in line with US data, where the PD ratio started to recover in the mid-1980s and fell abruptly with the onset of the post-2007 crisis. What our model does not capture is the level of asset prices around the turn of the century and their fall in 2000, both linked to the so-called “dotcom bubble”. Moreover, while the data saw an acceleration of the price-rises until 2000, our model, like that of Cogley and Sargent (2008), predicts price rises that are strongest at the beginning of the learning period, when beliefs change most. This is why in section 5 we explore an alternative Bayesian learning mechanism that does not share this feature.
4.3.3 Uncertainty about Transition Probabilities Increases Price Levels above their Full-Information Value

By construction of our ex-post estimate F^{FI}, mean persistence at the end of the Great Moderation under learning is with 0.989 almost exactly equal to the persistence in the full-information case. In other words, the increase in mean persistence alone cannot explain the boom in prices under learning, where price-dividend-ratios rise significantly above the full information value at the end of the low-volatility period. The reason for this is an additional variance effect on prices that arises from the uncertainty about transition probabilities and is absent under full information. To understand this effect, it is important to note that certainty PD ratios are a strongly convex function of persistence at high values of F_{ll}. Under learning, where persistence values are dispersed around their mean value, this convexity implies a strong positive Jensen’s inequality effect on PD ratios. For the simplified case of identical conditional distributions ($f(F_{hh}) = f(F_{ll})$), figure 8 illustrates this by showing how asset prices change as a function of both the mean and variance of the beta-distributed transition probabilities. The solid lines depict the value of PD ratios at high and low volatility in the absence of uncertainty, as a function of persistence $F_{hh} = F_{ll}$. As persistence rises, high-volatility prices fall, since agents are less willing to pay for assets whose payoffs they anticipate to remain volatile with a larger probability. Interestingly, low-volatility prices initially fall slightly, but rise strongly for high values of persistence above 0.995. The remaining lines in figure 8 show that this non-linearity of the certainty price leads to an increase in the level of prices as priors about persistence become looser.

Enter Figure 8 and 9 about here

Note how this convexity effect is different from that in Veronesi (1999), or Lettau et al (2008). In those papers, investors know the transition probabilities of regimes, but are uncertain about the current regime. In such an environment, the effect of an increase in the posterior probability of being in the “good regime” (where mean growth is high (Veronesi 1999) or volatility low
(Lettau et al 2008)) depends crucially on the value of this probability. Specifically, the authors argue that, at low values of being in the good state, a rise in its posterior probability implies an “improvement” in the outlook of future consumption on average, whose positive effect on asset prices, however, is offset by a rise in uncertainty about the prevailing regime. In contrast, at high levels of the posterior probability, both effects reinforce themselves: a further increase in the posterior probability towards 1 increases both the expected growth (lowers average volatility) AND lowers the uncertainty about the current regime. In our model, we abstract from uncertainty about the current regime, but look at uncertainty about the probability parameters governing regime transition. The setup allows us to separately look at the effects of changes in the mean and in the dispersion of the beta posterior distribution that describes uncertainty. As figure 8 shows, higher uncertainty actually increases prices in this model, due to the convexity of certainty prices. Moreover, this convexity of certainty prices in regime persistence does not arise from the inverse U-shaped relationship between the variance of a binary process and its parameter as argued in Veronesi (1999). Rather, this convexity seems to result from the fact that the infinite sum of a random variable that follows a markov process has a non-linear relationship with the persistence of that process. Figure 9 illustrates this by plotting the diagonal and off-diagonal elements of the present discounted value matrix $V = \sum_{i=0}^{\infty} \beta^i F^i = (I - \beta F)^{-1}$ as a function of persistence $F_{hh} = F_{ll}$. As the figure shows, for other than very high persistence, the geometrically declining probability of remaining in the same state for 1, 2, ..., n periods leads to entries in V that are close to $\frac{1}{2}$, and thus, asset prices that differ little between regimes. Thus, it seems to be the geometric nature of present discounted probabilities that leads to the highly non-linear relationship between asset prices and persistence in figure 8, not the inverse U-shape of the variance of binary processes.

4.3.4 Sensitivity of the Results to Alternative Parameter Choices

This section briefly presents the benchmark results with an unchanged uninformative prior but alternative values of risk-aversion, leverage, and the starting date of the Great Moderation,
Table 6: “Boom” denotes the increase in prices until the end of the Great Moderation relative to the high-volatility regime preceding it (computed over windows of 5 years). “Overvaluation” is the overvaluation at the end of the Great Moderation relative to the prices under full information. And “Bust” is the fall in prices in the first period after the Great Moderation.

summarised in table 6. The assumption of high risk-aversion was made to target price-dividend ratios that are close to those observed in the period before the Great Moderation. With lower risk aversion ($\gamma = 20$), the boom and bust in asset prices are only marginally reduced relative to the benchmark case, but the level of asset prices is about a quarter higher. When the relative volatility of log-dividend growth is reduced to $\lambda = 2.5$, both the boom and the bust are only about half as strong as in the benchmark calibration of $\lambda = 4.5$ that followed Lettau et al (2008) and their estimates of the relative volatility of dividends observed in post-war US data. With a later beginning of the Great Moderation in 1992, as suggested by the data for US consumption growth volatility, the boom is, with 25%, 7 percentage points smaller than in the benchmark case, although the bust is almost of the same magnitude. Finally, the results for the behaviour of asset prices during the Great Moderation are not much affected by the exact starting period of the scenario (here 1952 Q2), which is why we do not report a corresponding sensitivity analysis here.

This section has shown how, with learning about the transition probabilities between volatility regimes, a temporary moderation in macro-volatility can lead to a gradual rise in asset prices by between 30 and 45 percent. This boom in prices is due both to an increase in mean persistence as agents observe low volatility persist, and to a convexity effect. Particularly, with uncertainty about transition probabilities around a mean that is almost identical to their full-
information value, the positive probability of persistence values beyond 0.995, which, according to figure 8, would warrant a significantly higher low-volatility price, strongly increases the observed price-dividend ratios during low-volatility regimes relative to the case of full information. By increasing low-volatility prices relative to an environment with full information, uncertainty about the value of regime persistence thus has a fundamentally different effect in this model from that of uncertainty about dividend realisations, which decreases prices.

5 Asset Prices under Alternative Learning Schemes

The previous section used a framework that is standard in the learning literature, with beta priors and Markov transitions as in Cogley and Sargent (2008a,b) or Boz and Mendoza (2010), to investigate the effect of uncertainty and learning about the transition probabilities between volatility regimes on asset prices. This section looks at two alternative learning mechanisms. First, we replace the continuous beta prior with a discrete prior distribution that puts strictly positive mass on a persistence value of 1. This is in order to investigate a key-feature of the Great Moderation: as low-volatility persisted, market participants were increasingly suspicious of whether “this time it’s different”, and low volatility might in fact be a permanent feature of the post-1980s economy, rather than just a temporary regime. As a second alternative, we investigate asset price dynamics under ad hoc, or “recursive” learning schemes, where agents ignore the two-regime nature of the world and compute a best guess for average volatility using different statistics of the observed history.

5.1 “This Time it’s Different”: Learning when Low-Volatility is Suspected to be Permanent

Section II showed how statements by both policymakers and market participants linked the uncertainty about the durability of the Great Moderation to that about its potential causes, some of which were permanent and others temporary in nature. Our benchmark learning scheme,
based on a standard mechanism in Cogley and Sargent (2008a), has the advantage of being transparent and imposing relatively little structure on the agent’s view about the economy apart from her knowledge of the two-regime nature of the data generating process. In this section, we propose an alternative learning scheme that tries to explicitly capture the uncertainty about the “permanent vs. transitory” character of the Great Moderation. Thus, we assume, as previously, that the agent updates a prior about transition probabilities between two volatility regimes on the basis of the observed history of volatility-states $\Sigma^t = \{\sigma^2_t, \sigma^2_{t-1}, ..., \sigma^2_T\}$. However, in contrast to the previous section, we assume that the prior about transition probabilities is a two point distribution. Specifically, agents attach a small prior probability of \hat{p} to $F_{ll} = 1$, or a permanent Great Moderation, and probability $1 - \hat{p}$ to a persistent value in “normal times” of $F_{ll} = F^0_{ll} < 1$. Note that, after a switch to low volatility, the conditional probability of observing T consecutive low-volatility periods declines with T if $F_{ll} = F^0_{ll}$, but equals 1 if $F_{ll} = 1$. More specifically, after a switch to low volatility, the likelihood of observing σ^N_{ll}, a sequence of N additional low-variance periods, when $F_{ll} = F^0_{ll}$ is simply

$$L(\sigma^N_{ll} | \sigma^2_t, F_{ll} = F^0_{ll}) = P(\sigma^2_{t+1} = \sigma_t, \sigma^2_{t+2} = \sigma_t, ..., \sigma^2_{t+N} = \sigma_t | \sigma^2_t = \sigma^2_l, F_{ll} = F^0_{ll}) = (F^0_{ll})^N$$

where $P(A|B, F_{ll})$ denotes the probability of event A conditional on event B and persistence F_{ll}. During a sequence of low-volatility observations, the posterior probability of a permanent great moderation, denoted $P(F_{ll} = 1 | \sigma^N_l)$, thus increases with N according to Bayes’ Rule

$$P(F_{ll} = 1 | \sigma^N_l) = \frac{P(F_{ll} = 1 \land \sigma^N_l)}{P(F_{ll} = 1 \land \sigma^N_l) + P(F_{ll} = F^0_{ll} \land \sigma^N_l)} = \frac{\hat{p}}{\hat{p} + F^0_{ll}N(1 - \hat{p})}$$

(10)

Importantly, any observed switch from low to high volatility fully reveals that the great moderation was not permanent, thus “resetting” $P(F_{ll} = 1)$ back to its unconditional prior.

We focus on the same scenario as in the previous section, designed to capture the experience of the US economy after World War II. Moreover, for simplicity, we abstract from uncertainty
about transition probabilities in high-volatility times, and set F_{hh} equal to its ex-post estimate with probability 1.\footnote{As illustrated by figure 8, the effect of rising persistence of the current regime on asset prices during high-volatility regimes is much weaker, and more linear, than in low-volatility times. So the effect of uncertainty and learning on high-volatility asset prices is small, which justifies our simplification.} The vector of price dividend ratios under Bayesian learning about a ‘permanent vs. transitory’ Great Moderation, denoted p_{t}^{PT}, is then described by equations similar to (6) and (4). With $\lambda = 1$, this yields

$$p_{lt}^{PT} = \beta e\left(-\frac{\overline{\tau} + \alpha}{2}\right)\gamma \left(P_{ii,t}e^{\left(-\frac{\overline{\tau} + \alpha}{2}\right)}\sigma_i^2(1 + p_{t,t+1})^\alpha + P_{ij,t}e^{\left(-\frac{\overline{\tau} + \alpha}{2}\right)}\sigma_j^2(1 + p_{j,t+1})^\alpha\right)^{1/\alpha}$$

(11)

where once more $i, j \in \{h, l\}, P_{hj,t} = F_{hj}, j = h, l$ and $P_{lj,t}$ is the probability of moving from low volatility to regime j given the period t posterior probability of the change to low volatility being permanent in equation (10).

5.1.1 Solution Algorithm

Price-dividend ratios under this learning schemes are not simply fixed points to equation (11). Rather, the representative agent anticipates that, should low volatility persist in the next period, the probability of a permanent change increases, as does the price-dividend ratio. Thus, we have to compute the whole path of price-dividend ratios jointly. This is done as follows: first, calculate the price dividend ratio for permanently low volatility $p(F_{lt} = 1)$ as a fixed point to (11) for $F_{lt} = 1$. Second, calculate the path of posterior probabilities $P(F_{lt} = 1|\sigma_i^N)$ as N rises, and the associated transition probabilities $P_{Li,t}$. Once $P(F_{lt} = 1|\sigma_i^N)$ is close enough to 1, say after \overline{N} low volatility periods, we know that $p_{l,t+\overline{N}}^{PT} = p(F = 1)$. Third, we know that the high-volatility price-dividend ratio p_{ht}^{PT} is constant through time. This follows from the assumption of perfect knowledge of F_{hh} and the fact that any switch to high volatility reveals the temporary nature of the preceding low-volatility-sequence, and thus “resets” the probability of any future switch to low-volatility being permanent back to the prior \tilde{p}. Choose a value for $p_{hs}^{PT}, s = t, t + 1, \ldots$ and calculate the sequence of price-dividend ratios at low volatility p_{ls}^{PT} for $s = \overline{N} - 1, \overline{N} - 2, \ldots, t$ by backward induction using (11), given $p_{l,t+\overline{N}}^{PT} = p(F = 1)$ and the sequence.
P_{L_i,t+s}, s = 1, ..., N − 1. Fourth, calculate \(p_{h_{t-1}}^{PT} \), the price-dividend ratio at high volatility in period \(t - 1 \), from \(F_{hh} \) and the values of \(p_{lt}^{PT} \) and \(p_{ht}^{PT} \) using (11). If \(p_{h_{t-1}}^{PT} = p_{ht}^{PT} \), we have found an equilibrium price sequence. If not, set \(p_{hs}^{PT} = p_{h_{t-1}}^{PT}, s = t, t+1, ..., \) and iterate.

5.1.2 Parameter Choice

As mentioned previously, we set \(F_{hh} \) to its ex-post estimate with probability 1, thus implicitly abstracting from any learning during the high-volatility period that preceded the Great Moderation. In addition, the model requires us to specify the transition probability in “normal times” \(F_{ll}^0 \), as well as \(\hat{p} \), the prior probability that any observed change to a low-volatility regime be permanent. We set the latter to \(\hat{p} = 1\% \) and perform a robustness analysis with other values.

For the transition probability \(F_{ll}^0 \) in “normal times”, there is equally no obvious target. However, one requirement that disciplines its value is that a long sequence of low-volatility observations be sufficiently unlikely in normal times to warrant the debate about the character of the Great Moderation among both academics and market-participants during the late 1990s. The ex-post estimate \(F_{ll}^{FI} \) therefore seems a bad choice not only because it conditions, implicitly, on the ex-post length of the Great Moderation before it happened, but also because the latter becomes, by definition, a normal event. Instead, we set \(F_{ll}^0 \) such that the likelihood of 48 consecutive observations (12 years) of low-volatility is with 10 % sufficiently low to explain the debate about a potentially permanent Great Moderation in the second half of the 1990s. This results in a value of \(F_{ll}^0 = 0.87 \). Again, we also document the robustness of the results to this parameter choice.

5.1.3 Results

Enter Figure 10 about here

Figure 10 shows the time path that results from this learning scheme, as compared to US data. The rising posterior probability of a permanent moderation in macro-volatility over the
course of the Great Moderation leads to an S-shaped increase in prices. In contrast to the benchmark learning mechanism taken from Cogley and Sargent (2008), this alternative learning scheme thus features an acceleration of price increases during the great moderation, although slightly later than that observed in the data. Again, by construction, the price path increases monotonically until the end of the Great Moderation, and thus does not replicate the hump-shape of observed PD ratios. Importantly, however, the magnitude of the boom in table 7 is with 77% more than twice as large as in the benchmark learning scheme above. Moreover, the observed end of the Great Moderation comes with a strong bust in asset prices of 84%, as agents update the probability of being in a permanently more benign macroeconomic environment to zero. The reason for this stronger effect, relative to learning with a standard beta prior, is that the effect of additional information on the posterior probability is concentrated at the maximum persistence value of 1. Given the non-linearity of asset prices in figure 8, this leads to an effect that is stronger than the one resulting from a model where the increase in persistence affects the probabilities attached to all values in [0, 1].

Figure 11 illustrates how the results depend on the assumptions about the conditional prior probability \(\hat{p} \) and the value of \(F_0^{ll} \). Specifically, when the prior probability \(\hat{p} \) equals 0.1% (second panel of figure 11), the rise in prices is delayed, and the Great Moderation comes to an end before the posterior converges to 1. So the rise in prices is “cut off”, and the resulting boom is with 56% somewhat smaller. Unsurprisingly, as the transition probabilities of the Great Moderation in normal times become highly persistent (third and fourth panel), the boom in prices all but vanishes because a long sequence of low volatility periods provides less reason to suspect a permanent change in the data generating process. Finally, the effect of lower risk aversion \(\gamma \) or leverage \(\lambda \) is very similar under this learning scheme to that in the benchmark economy\(^\text{15}\).

\(^{15}\text{The results are available from the authors upon request.}\)
Table 7: “Boom” denotes the increase in prices until the end of the Great Moderation relative to the high-volatility regime preceding it (computed over windows of five years). “Overvaluation” is the overvaluation at the end of the Great Moderation relative to the prices without learning. And “Bust” is the fall in prices in the first period after the Great Moderation (which can be higher than the “Boom”, as the latter is calculated as the difference in averages over 20 quarters).

5.2 Ad hoc learning

It has been argued by Haldane (2009), for example, that overconfidence in a low volatility environment may arise when agents base their inferences about the future predominantly on recent observations of small shocks. This over-reliance on the recent past is not captured by the optimal nature of the learning schemes considered so far, but in line with a large number of studies where agents follow ad hoc learning rules that map observations into estimates of parameters of interest (see for example Evans and Honkapohja (1999)). To see whether non-optimal learning rules can deliver a boom and bust in asset prices similar to those observed in US data, we assume that the representative agent knows the mean dividend growth \bar{g} and observes the history of shocks $\Omega_t = \{\varepsilon_s\}_{s=0}^t$. But she ignores, or chooses to ignore, the two-stage nature of the data generating Markov process in her estimate about future macro-volatility. Rather, she uses simple ad hoc rules that map observed histories into estimates $\hat{\sigma}_{t+1}^2$ of the variance of future shocks σ^2

$$\hat{\sigma}_{t+1}^2 = G(\Omega_t)$$
where $G : R^t \rightarrow R^+$. Specifically, we consider three simple mappings G

\[
G^{OLS} = \frac{1}{N} \sum_{s=0}^{t} (\varepsilon_s)^2
\]
(12)

\[
G^{CG} = \xi (\varepsilon_t)^2 + (1 - \xi) G^{CG}_{t-1} = \sum_{s=0}^{t} \xi (1 - \xi)^{t-s} \varepsilon_s^2, \quad 0 < \xi < 1
\]
(13)

\[
G^{CW} = \frac{1}{n} \sum_{s=t-n}^{t} (\varepsilon_s)^2
\]
(14)

Thus, under G^{OLS} agents simply compute their best guess of the future variance as an average over the entire history of shocks. G^{CG} describes a simple “constant-gain” learning rule: the agent computes the variance as a weighted average of his best guess in the previous period and the squared shock today. Relative to G^{OLS}, this overweighs more recent observations, as the weight on more distant observations decays geometrically at the rate $1 - \xi$. Finally, G^{CW} uses windows of the n most recent observations to compute the variance.

To implement the three ad-hoc learning rules quantitatively, we choose a window length of 20 years ($n = 80$), and a constant gain parameter of 3 percent. Figure 12 presents, for each of the three rules, averages over 120 realisations of the time path of asset prices, together with full-information prices. With OLS learning, the fall in the variance estimate for consumption growth is relatively slow. Moreover, since each estimate weighs all past periods equally, the variance estimate remains an average across high and low volatility periods, resulting in a relatively small rise in prices. Nevertheless, the price rises above that under full information, as agents are more willing to pay for an asset with average volatility, compared to one whose payoff transits between periods of high and low volatility with moderate persistence.

Enter Figure 12 about here

With constant gain learning, the contribution of past periods to the variance estimate falls geometrically over time. This implies that the estimate of consumption variability during the Great Moderation falls faster, and further, than with OLS learning. The boom in prices is
Table 8: “Boom” denotes the relative increase in prices until the end of the Great Moderation relative to the high-volatility regime preceding it (computed over windows of 5 years). “Overvaluation” is the overvaluation at the end of the Great Moderation relative to the prices under full information. And “Bust” is the fall in prices in the first period after the Great Moderation.

Under all three ad-hoc learning rules, the fall in prices at the end of the Great Moderation is relatively slow: only as information about a change in volatility accumulates do agents adjust their estimates. Contrary to their Bayesian counterparts, recursive, ad hoc learning rules are thus not able to deliver sudden crashes in prices. Table 8 summarises the results for the benchmark case.

6 Conclusion

From a review of both academic and investment research, we conclude that, first, the “Great Moderation” in macro-volatility was perceived to be an important factor behind the asset price boom of the 1990s and 2000s, and, second, that academics and investors alike were uncertain about the origins and persistence of the new low-volatility environment. Using different learning mechanisms, we modelled this uncertainty explicitly in an asset pricing model with time-varying volatility. The results confirmed the intuition of policymakers (Bean 2009, Haldane 2009) that
increasing confidence in a benign macroeconomic environment may have led to a strong and gradual increase in asset prices above values that are consistent with ex-post estimates of the persistence of volatility regimes. In particular, we find that Bayesian learning can lead to an asset price boom of around 30 to 45 percent in our benchmark learning model based on Cogley and Sargent (2008a). This increase results from both an increase in posterior mean persistence and a pure Jensen’s inequality effect that increases asset prices with uncertain transition probabilities above certainty levels. A similar learning scheme with a two-point prior distribution that highlights the uncertainty about a permanent vs. transitory Great Moderation leads to an even stronger boom in asset prices of almost 80 percent. Moreover, the S-shaped time pattern of price increases implied by this alternative model is more in line with the data than the concave price path under our benchmark learning mechanism, where the quicker updating of priors at the beginning of the Great Moderation leads to strongest price rises there. Finally, Bayesian learning predicts that the end of the low-volatility period, which we identified with the beginning of the recent crisis, leads to a strong crash in prices. In summary, while there are arguments in favour of any of the three prior distributions for transition probabilities we discuss (uniform vs. moderately persistent beta vs. binary with low weight on a permanent Great Moderation), all three imply a strong boom and bust in asset prices. Neither of the two Bayesian learning schemes, however, replicates the exact shape of asset prices observed in the data exactly, particularly the strong rise and fall around the so-called dotcom boom. Ad hoc, or statistical, learning rules, on the other hand, also predict a strong boom in prices, but do not predict a strong crash at the end of the Great Moderation period, as they react much more slowly to information than Bayesian learning schemes.

Future research could extend this study in several directions. For example, although mean growth during the Great Moderation was essentially the same as during the preceding period, it should be interesting to include time variation in the mean growth of the economy. Also, one could analyse an alternative scenario where agents directly form expectations about future prices, rather than the distribution of dividends as in the model studied here. Adam and Marcet (2010) show how this can lead to self-fulfilling bubbles and crashes in asset prices, as a rise in
prices is sustained by generating expectations of rises in the future. When learning about volatility, this self-referential mechanism is less clear, as higher expected volatility primarily feeds into the level of prices, and not into their second moment. But when volatility is itself stochastic, as for example in Bacchetta et al (2010), there is potential for self-referential learning about asset price volatility. These issues, however, are left for future research.
References

7 Appendix

7.1 Data Appendix

Consumption is quantified as the Total Real Personal Consumption Expenditures measured in quantity index [index numbers, 2005 = 100]. The data are quarterly, seasonally adjusted and their source is the National Economic Accounts of the Bureau of Economic Analysis (BEA).

GDP is quantified as the Real Gross Domestic Product, measured in 2005-chained dollars. The data are quarterly, seasonally adjusted and their source is the National Economic Accounts of the Bureau of Economic Analysis (BEA).

Population is quantified as the Midperiod Population of each quarter. The data source is the National Economic Accounts of the Bureau of Economic Analysis (BEA).

Asset Price is quantified as the average S&P 500 Stock Price Index of each quarter. The data source is Robert Shiller’s homepage. The original data are monthly averages of daily closing prices.

Dividend is quantified as the original quarterly Dividend Payment reported in the Robert Shiller’s homepage.

Price-Earning Ratio is quantified as the Cyclically Adjusted Price Earnings Ratio (P/E10), known also as the CAPE. The data source is the Robert Shiller’s homepage.
7.2 Appendix B

7.2.1 Solving for the equilibrium price numerically with Bayesian learning about Transition Probabilities

The Bayesian agent enters each period with a prior. He observes the realization of the exogenous process and he updates the counters

\[
\begin{align*}
 n^{ij}_{t+1} &= n^{ij}_{t} + 1 \text{ if } s_{t+1} = j \text{ and } s_{t} = i \\
 n^{ij}_{t+1} &= n^{ij}_{t} \quad \text{if otherwise.}
\end{align*}
\]

The posterior density function is

\[
f(F_{hh}, F_{ll} | \Sigma^t) = \text{beta}(n^{hh}_{t}, n^{hl}_{t}) \ast \text{beta}(n^{ll}_{t}, n^{lh}_{t}).
\] (15)

We would like to calculate

\[
p_t = \int p(S_t, F) f(F | \Sigma^t) dF
\]

which can be also expressed as

\[
\int p(S_t, F) f(F | \Sigma^t) dF = E_{\Sigma^t}[p(F)].
\] (16)

Therefore, equation (2) can be approximated as

\[
E_{\Sigma^t}[p(F)] \approx \frac{\sum_{i=1}^{n} p(S_t, F_i)}{n}
\] (17)

In order to compute equation (17) at each time \(t\) we generate a sample of \(n = 3000\) transition probability matrices, \(F\), as random observations from equation (15). Then, we approximate the
The figure plots the growth rate of real GDP and its standard deviation estimated in 10-quarter rolling windows. Output is defined in per-capita terms, calculated as the ratio of real gross domestic product, measured in 2005 dollars, over the total population. The data are quarterly and span the period 1952Q2 – 2010Q2. The data are taken from the BEA.

price function by its sample average, so

\[p_t \approx \frac{\sum_{i=1}^{n} p(S_t, F_i)}{n} \]

8 Figures
The figure plots the growth rate of real consumption and its standard deviation estimated in 10-quarter rolling windows. Consumption is defined in per-capita terms, calculated as the ratio of total real personal consumption expenditures, measured in quantity index [index numbers, 2005 = 100], over the total population. The data are quarterly and span the period 1952Q2 – 2010Q2. The data are taken from the BEA.
The figure plots the dividend price ratio together with the standard deviation of the real GDP growth rate (first subplot) and the standard deviation of the real consumption growth rate (second subplot), estimated in 10-quarter rolling windows. GDP and consumption are defined as in figures 1 and 2. The financial data are taken from the Robert Shiller’s homepage and the rest of the data from the BEA.
The figure plots the price-dividend and the price-earnings ratio for the S&P 500, as well as the price-dividend ratio adjusted for share repurchases using the data by Boudoukh et al (2007), which is available between 1971 and 2003. As their sample of US firms is slightly broader than that underlying the measures for PD and PE ratios, which are taken from Robert Shiller’s homepage, the adjusted PD ratio is calculated as $PD_{adj} = \frac{PD_{adj}}{PD_{\star}}$, where \star denotes the measures presented in Boudoukh et al (2007). The data on prices are monthly, those on dividends and on the price-earnings ratio are quarterly, and those on the adjusted price-dividend ratio is yearly. We calculate quarterly estimates for the prices by taking quarterly averages over the monthly data, and using the yearly observation for the adjusted series in all 4 quarters.
The figure plots the price dividend ratio in US data (upper Panel), and in the model (lower panel), for the benchmark calibration of the model.
The figure plots the price dividend ratio in US data (upper Panel), and under learning about transition probabilities with beta priors (lower panel), for a moderately persistent prior with mean persistence of 0.75.
The figure plots the cumulative posterior distributions for the transition probability F_{ll} after an increasing number of observations on the Great Moderation, starting from an uninformative uniform prior.
Figure 8: Price-Dividend Ratios as a Function of Persistence and Prior Tightness

For the simplified case of symmetric transition probabilities ($F_{ll} = F_{hh}$), the figure plots the price dividend ratio as a function of persistence for different values of the tightness of priors for the benchmark calibration of the model.
Figure 9: Behind the Non-Linear Asset Price-Persistence Relation

For the case of symmetric transition probabilities $F_{hh} = F_{ll}$, the figure depicts the diagonal and non-diagonal elements of the present discounted value matrix $(I - \beta F)^{-1}$.
The figure plots the price-dividend ratio in US data (upper panel), and under learning about a permanent vs. transitory Great Moderation (lower panel), for the benchmark calibration of the model.
The figure shows the time-path of dividends with learning about a permanent vs. transitory Great Moderation with different prior probabilities.
The figure plots the price-dividend ratio in US data (upper Panel), and under three ad hoc learning rules: OLS (second panel), constant gain (third panel), and constant window (bottom panel), for the benchmark calibration of the model. The full information prices correspond to the case of high persistence.