Rethinking the Effects of Financial Liberalization

Fernando Broner and Jaume Ventura

CREI and Universitat Pompeu Fabra

August 2007
What are the effects of financial liberalization? We focus on

- consumption, investment, growth, and welfare

Conventional view is that consumption stabilizes, investment and growth increase, and welfare improves

But we know that in some countries financial liberalization has led to

- increase in consumption volatility
- current account surpluses
- reduction in investment and growth

Why does this happen? What are the welfare implications?
A model of asset trade with endogenous enforcement

- Two periods, Today and Tomorrow (with state \(s \in S \) occurring with prob \(\pi_s \))
- Consider a country with many individuals, \(i \in I \), that maximize
 \[
 u(c_{i0}) + \beta \cdot \int_{s \in S} \pi_s \cdot u(c_{is})
 \]
 subject to
 \[
 (c_{i0} - y_{i0}) + \int_{s \in S} \pi_s \cdot \frac{(c_{is} - y_{is})}{R_s} = 0
 \]
 \(c_{is} \geq y_{is} \) if \(s \notin E \)

 FOC’s are given by
 \[
 u'(c_{is}) = \begin{cases}
 \frac{u'(c_{i0})}{\beta \cdot R_s} & \text{if } s \in U_i \\
 \frac{u'(y_{is})}{R_s} & \text{if } s \notin U_i
 \end{cases}
 \]
 \[
 U_i = \{ s \in S : s \in E \text{ or } u'(c_{i0}) \leq \beta \cdot R_s \cdot u'(y_{is}) \}
 \]

 where \(U_i \) are states for which borrowing constraint does not bind for \(i \)
- From now on we assume \(u(\cdot) = \ln(\cdot) \)
- What determines enforcement?
 - With strong institutions, \(E = S \)
 - With weak institutions, \(E \) results from maximizing ex-post average utility in each state
Autarky equilibrium

- Prices clear domestic markets
 \[R_s = \begin{cases} \beta^{-1} \cdot \frac{y_s}{y_0} & \text{if } s \in E \\ 0 & \text{if } s \notin E \end{cases} \]

- Then \(U_i = E \) and equilibrium consumption is
 \[c_i = \frac{\omega_i}{\omega} \cdot y_0 \quad \text{and} \quad c_s = \begin{cases} \frac{\omega_i}{\omega} \cdot y_s & \text{if } s \in E \\ \frac{\omega_i}{y_is} & \text{if } s \notin E \end{cases} \]
 where \(\frac{\omega_i}{\omega} \) is the relative wealth of \(i \)

\[\frac{\omega_i}{\omega} = \frac{y_i0}{y_0} + \beta \cdot \int_{s \in E} \frac{\pi_s \cdot y_s}{y_is} \\
1 + \beta \cdot \int_{s \in E} \pi_s \]

- If the country has weak institutions any proposed \(E \) must satisfy
 \[\int_{i \in I} \ln c_is - \int_{i \in I} \ln y_is \geq 0 \quad \text{for all } s \in E \]
Trade equilibrium

- Rest-of-world has good institutions \((E^* = S)\) and is large

- Prices clear world markets
 \[R_s = R_s^* = \beta^{-1} \cdot \frac{y_s^*}{y_s^*} \text{ for all } s \in S \]

- Then \(U_i \equiv \left\{ s \in S : s \in E \text{ or } \frac{y_{is}}{y_s^*} \leq \frac{\omega_i}{\omega^*} \right\} \) and equilibrium consumption is
 \[c_{i0} = \frac{\omega_i}{\omega^*} \cdot y_s^* \text{ and } c_{is} = \begin{cases} \frac{\omega_i}{\omega^*} \cdot y_s^* & \text{if } s \in U_i \\ \frac{\omega_i}{y_{is}} & \text{if } s \notin U_i \end{cases} \]
 where \(\frac{\omega_i}{\omega^*}\) is the relative wealth of \(i\)

 \[\frac{\omega_i}{\omega^*} = \frac{y_{i0}}{y_s^*} + \beta \cdot \int_{s \in U_i} \pi_s \cdot \frac{y_{is}}{y_s^*} \frac{1}{1 + \beta \cdot \int_{s \in U_i} \pi_s} \]

- If the country has weak institutions any proposed \(E\) must satisfy
 \[\int_{i \in I} \ln c_{is} - \int_{i \in I} \ln (y_{is} + x_{is}^*) \geq 0 \text{ for all } s \in E \]
The experiment

- Financial liberalization is a move from autarky to trade

- Before trade liberalization prices are

\[R_s = \begin{cases} \beta^{-1} \cdot \frac{y_s}{y_0} & \text{if } s \in E \\ 0 & \text{if } s \notin E \end{cases} \]

- Rest-of-world has strong institutions \((E^* = S)\), flat endowments \((y_s^* = y_0^* \text{ for all } s \in S)\), and is large

- After trade liberalization prices are

\[R_s = R_s^* = \beta^{-1} \text{ for all } s \in S \]

- interest rate equal to (inverse of) time preference
- insurance at actuarially fair prices

- Consider a country with high but uncertain growth potential

\[\int_{s \in S} \pi_s \cdot \left(\frac{y_s}{y_0} \right) \geq 1 \]

- To simplify, we assume \(S = \{G, B\} \) with \(\pi_G = \pi_B = \frac{1}{2} \)
Financial liberalization with strong institutions: the conventional view

- Before liberalization, individual and aggregate consumption move one-to-one

\[c_{i0} = \frac{\omega_i}{\omega} \cdot y_0, \quad c_{iB} = \frac{\omega_i}{\omega} \cdot y_B, \quad \text{and} \quad c_{iG} = \frac{\omega_i}{\omega} \cdot y_G \]

\[c_0 = y_0, \quad c_B = y_B, \quad \text{and} \quad c_G = y_G \]

where \(\frac{\omega_i}{\omega} \) is the relative wealth of \(i \)

\[\frac{\omega_i}{\omega} = \frac{1}{1 + \beta} \cdot \left(\frac{y_{i0}}{y_0} + \beta \cdot \frac{1}{2} \cdot \left(\frac{y_{iB}}{y_B} + \frac{y_{iG}}{y_G} \right) \right) \]

- After liberalization, individual and aggregate consumption are both flat

\[c_{i0} = c_{iB} = c_{iG} = \frac{1}{1 + \beta} \cdot \left(y_{i0} + \beta \cdot \frac{1}{2} \cdot (y_{iB} + y_{iG}) \right) \]

\[c_0 = c_B = c_G = \frac{1}{1 + \beta} \cdot \left(y_0 + \beta \cdot \frac{1}{2} \cdot (y_B + y_G) \right) \]

- Financial markets allow countries to smooth consumption over time and across states of nature
Financial liberalization revisited: the case of weak institutions

Example #1: **Why do high-growing countries run current account surpluses?**

- (Borrowing and lending model) Assume $y_{iB} = y_{iG} = y_i$, $y_1 > y_0$, and $\beta = 1$
- Assume $E^A = E^T = \emptyset$
- Before liberalization, there is both individual and country autarky

 $$c_{i0} = y_{i0} \quad \text{and} \quad c_{i1} = y_i$$
 $$c_0 = y_0 \quad \text{and} \quad c_1 = y_1$$

- After liberalization, we have instead that

 $$c_{i0} = \begin{cases}
 \frac{1}{2} \cdot (y_{i0} + y_i) & \text{if } i \in I^U \\
 y_{i0} & \text{if } i \notin I^U
 \end{cases} \quad \text{and} \quad c_{i1} = \begin{cases}
 \frac{1}{2} \cdot (y_{i0} + y_i) & \text{if } i \in I^U \\
 y_i & \text{if } i \notin I^U
 \end{cases}$$

 $$c_0 = y_0 - \frac{1}{2} \cdot \int_{i \in I^U} (y_{i0} - y_i) \quad \text{and} \quad c_1 = y_1 + \frac{1}{2} \cdot \int_{i \in I^U} (y_{i0} - y_i)$$

 where $I^U = \{ i \in I \mid y_{i1} \leq y_{i0} \}$

- Liberalization leads to CA surplus and steeper aggregate consumption
- Welfare increases: $I - I^U$ are not affected, I^U are better off and lend now
Financial liberalization revisited: the case of weak institutions

Example #1: Why do high-growth countries run current account surpluses?

- How does financial liberalization affect enforcement?
- Before liberalization, there is enforcement if
 \[
 \int_{i \in I} \ln \left(\frac{\omega_i}{\omega} \right)^A - \int_{i \in I} \ln \left(\frac{y_i}{y_1} \right) \geq 0
 \]
- After liberalization, there is enforcement if
 \[
 \int_{i \in I} \ln \left(\frac{\omega_i}{\omega} \right)^T - \int_{i \in I} \ln \left(\frac{y_i}{y_1} \right) \geq \ln \frac{y_1}{\frac{1}{2} \cdot (y_0 + y_1)} (> 0)
 \]
- Unless terms-of-trade effects increase inequality a lot, incentives to enforce payments are reduced
 - Why? Not enforcing now brings the benefits of defaulting on foreign payments
- If financial liberalization lowers enforcement \((E^A = S, \ E^T = \emptyset)\) \(\Rightarrow\) CA surplus and lower welfare
 - Autarky borrowers become constrained and cannot borrow now
 - Autarky lenders lend at worst terms or become constrained
Financial liberalization revisited: the case of weak institutions

Example #2: Why does financial liberalization increase consumption volatility?

- (Insurance model) Assume $y_G > y_B$ and $\beta = +\infty$
- Assume $E^A = E^T = \{B\}$
- Before liberalization, there is both individual and country autarky
 \[
 c_{iB} = y_{iB} \quad \text{and} \quad c_{iG} = y_{iG} \\
 c_B = y_B \quad \text{and} \quad c_G = y_G
 \]
- After liberalization, we have instead that
 \[
 c_{iB} = \begin{cases}
 \frac{1}{2} \cdot (y_{iB} + y_{iG}) & \text{if } i \in I^U \\
 y_{iB} & \text{if } i \notin I^U
 \end{cases} \\
 c_B = y_B - \frac{1}{2} \cdot \int_{i \in I^U} (y_{iB} - y_{iG}) \\
 \quad \text{and} \quad c_{iG} = \begin{cases}
 \frac{1}{2} \cdot (y_{iB} + y_{iG}) & \text{if } i \in I^U \\
 y_{iG} & \text{if } i \notin I^U
 \end{cases} \\
 c_G = y_G + \frac{1}{2} \cdot \int_{i \in I^U} (y_{iB} - y_{iG})
 \]
 where $I^U = \{i \in I \mid y_{iG} \leq y_{iB}\}$
- Aggregate consumption volatility increases
- Welfare increases: $I - I^U$ are not affected, I^U are better off and get insurance now
- If $E^A = E^T = \{G\}$, welfare still increases but aggregate consumption volatility decreases
Financial liberalization revisited: the case of weak institutions

Example #2: *Why does financial liberalization increase consumption volatility?*

- How does financial liberalization affect enforcement?

- Before liberalization, there is enforcement if

\[
\int_{i \in I} \ln \left(\frac{\omega_i}{\omega} \right)^A - \int_{i \in I} \ln \left(\frac{y_iB}{yB} \right) \geq 0 \quad \text{and} \quad \int_{i \in I} \ln \left(\frac{\omega_i}{\omega} \right)^A - \int_{i \in I} \ln \left(\frac{y_iG}{yG} \right) \geq 0
\]

- After liberalization, there is enforcement if

\[
\int_{i \in I} \ln \left(\frac{\omega_i}{\omega} \right)^T - \int_{i \in I} \ln \left(\frac{y_iB}{yB} \right) \geq 0 \quad \text{and} \quad \int_{i \in I} \ln \left(\frac{\omega_i}{\omega} \right)^T - \int_{i \in I} \ln \left(\frac{y_iG}{yG} \right) \geq \ln \frac{yG}{\frac{1}{2} \cdot (y_B + y_G)} (> 0)
\]

- Unless *terms-of-trade* effects increase inequality a lot
 - incentives to enforce are not affected in bad times
 - incentives to enforce are reduced in good times since it means defaulting on foreign payments

- If financial liberalization lowers enforcement in good times \((E^A = S, E^T = \{B\})\) ⇒ higher consumption volatility and lower welfare
 - Pro-cyclical become constrained and cannot get insurance now
 - Counter-cyclical get insurance at worse terms or become constrained
Investment and growth

- Assume now that there is investment Today, k_i, and production Tomorrow, $F_{is}(k_i)$.
- Individuals now maximize
 \[
 \ln(c_{i0}) + \beta \cdot \int_{s \in S} \pi_s \cdot \ln(c_{is})
 \]
 subject to
 \[
 (c_{i0} + k_i - y_{i0}) + \int_{s \in S} \pi_s \cdot \frac{(c_{is} - F_{is}(k_i))}{R_s} \leq 0
 \]
 \[
 c_{is} \geq y_{is} \text{ if } s \notin E
 \]
 FOC's are given by
 \[
 u'(c_{is}) = \begin{cases} u'(c_{i0}) & \text{if } s \in U_i \\ \frac{\beta}{R_s} & \text{if } s \notin U_i \\ u'(F_{is}(k_i)) & \text{if } s \notin U_i \end{cases}
 \]
 \[
 1 = \int_{s \in U_i} \pi_s \cdot \frac{1}{R_s} \cdot F'_{is}(k_i) + \int_{s \notin U_i} \pi_s \cdot \frac{\beta \cdot u'(F_{is}(k_i))}{u'(c_{i0})} \cdot F'_{is}(k_i)
 \]
 \[
 U_i = \{s \in S : s \in E \text{ or } u'(c_{i0}) \leq \beta \cdot R_s \cdot u'(F_{is}(k_i))\}
 \]
- With strong institutions ($E^T = E^A = S$), financial liberalization raises investment and growth.
- With weak institutions (E^T and E^A endogenous)
 - investment and growth might fall since unproductive individuals invest less and lend abroad
 - decline in enforcement and welfare more likely due to potential effect of liberalization on investment
Final remarks

• What are the effects of financial liberalization? We focus on
 – consumption, investment, growth, and welfare

• Conventional view is that consumption stabilizes, investment and growth increase, and welfare improves

• But we find that when institutions are weak financial liberalization might lead to
 – increase in consumption volatility
 – current account surpluses
 – reduction in investment and growth
 – decline in enforcement

• The net effect on welfare might be negative if the decline in enforcement is severe enough